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Abstract A Roman dominating function on a graph G is a labeling f : V (G) →
{0, 1, 2} such that every vertex with label 0 has a neighbor with label 2. The Romandomination number, γR(G), of G is the minimum of ∑v∈V (G) f (v) over suchfunctions. The Roman bondage number bR(G) is the cardinality of a smallest setof edges whose removal fromG results in a graph with Roman domination numbergreater than γR(G). In this paper we obtain upper bounds on bR(G) in terms of (a)the average degree and maximum degree, and (b) Euler characteristic, girth andmaximum degree. We also show that the Roman bondage number of everygraph which admits a 2-cell embedding on a surface with non-negative Eulercharacteristic does not exceed 15.
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1 Introduction

All graphs considered in this article are finite, undirected, without loops and multiple edges.
We denote the vertex set and the edge set of a graph G by V (G) and E(G), respectively.
Let Pn denote the path with n vertices. For any vertex x of a graph G, NG(x) denotes the set
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of all neighbors of x in G, NG[x] = NG(x)∪{x} and the degree of x is dG(x) = |NG(x)|. The
minimum and maximum degree of a graph G are denoted by δ(G) and ∆(G), respectively.
For a graph G, let x ∈ X ⊆ V (G). A vertex y ∈ V (G) is an X-private neighbor of x if
NG[y]∩X = {x}. The X-private neighborhood of x, denoted pnG[x,X ], is the set of all
X-private neighbors of x. An orientable compact 2-manifold Sh or orientable surface Sh

of genus h (see [19]) is obtained from the sphere by adding h handles. Correspondingly, a
non-orientable compact 2-manifold Nq or non-orientable surface Nq of genus q is obtained
from the sphere by adding q crosscaps. Compact 2-manifolds are called simply surfaces
throughout the paper. The Euler characteristic is defined by χ(Sh) = 2− 2h, h ≥ 0, and
χ(Nq) = 2−q, q ≥ 1. The Euclidean plane S0, the projective plane N1, the torus S1, and
the Klein bottle N2 are all the surfaces of non-negative Euler characteristic.

A dominating set for a graph G is a subset D⊆V (G) of vertices such that every vertex
not in D is adjacent to at least one vertex in D. The minimum cardinality of a dominating set
is called the domination number of G and is denoted by γ(G). Graph domination applies
naturally to many tasks, including facility location and network construction. For example,
in constructing a cellular phone network, one needs to choose locations for the towers to
cover a large region as cheaply as possible. Many variants of domination have been studied
extensively and have applications such as constructions of error-correcting codes for digital
communication and efficient data routing in wireless networks. A variation of domination
called Roman domination was introduced independently by Arquilla and Fredricksen [2],
ReVelle [16, 17] and Stewart [24], which was motivated with the following legend. In
the 4th century A.D., Constantine the Great issued a decree to ensure the protection of
the Roman empire. Constantine ordered that each city in the empire either has a legion
stationed within it for defense or lies near a city with two standing legions. This way,
if a defenseless city were attacked, a nearby city could dispatch reinforcements without
leaving itself defenseless. The natural problem is to determine how few legions suffice
to protect the empire. The concept of Roman domination can be formulated in terms of
graphs. More formally, following Cockayne et al. [5], a Roman dominating function (or
RDF) on a graph G is a vertex labeling f : V (G)→ {0,1,2} such that every vertex with
label 0 has a neighbor with label 2. For a RDF f , let V f

i = {v ∈V (G) : f (v) = i} for each
i ∈ {0,1,2}. Since this partition determines f , we can equivalently write f = (V f

0 ;V f
1 ;V f

2 ).
The weight f (V (G)) of a RDF f on G is the value ∑v∈V (G) f (v), which equals |V f

1 |+2|V f
2 |.

The Roman domination number of a graph G, denoted by γR(G), is the minimum weight of
a Roman dominating function on G. A function f = (V f

0 ;V f
1 ;V f

2 ) is called a γR-function on
G if it is a Roman dominating function and f (V (G)) = γR(G). Cockayne et al. [5] showed
that γ(G)≤ γR(G)≤ 2γ(G). Chambers et al. [4] proved that if a graph G has order n then
γR(G) ≤ 4n/5 when δ(G) ≥ 1 and γR(G) ≤ 8n/11 when δ(G) ≥ 2. Liu and Chang [11]
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proved that γR(G) ≤ 2n/3 when δ(G) ≥ 3. Liedloff et al. [10] and Liu and Chang [12]
investigated algorithmic aspect of Roman domination. Applications of Roman domination
were also shown in [4].

One measure of the stability of the Roman domination number of a graph G under edge
removal is the Roman bondage number bR(G), defined by Rad and Volkmann in [13], as
the cardinality of a smallest set of edges whose removal from G results in a graph with
Roman domination number greater than γR(G). In [3], Bahremandpour et al. showed that
the decision problem for bR(G) is NP-hard even for bipartite graphs. For more information
we refer the reader to [1, 3, 8, 13, 15, 21, 22, 25].

It is quite natural to consider the Roman bondage number for a graph on surfaces.
The first upper bounds on bR(G), where G is a planar graph, were obtained by Rad and
Volkmann [15]. They proved that bR(G) ≤ ∆(G) + 6. In [1], Akbari, Khatirinejad and
Qajar recently proved that bR(G)≤ 15 provided G is a planar graph. In this paper we prove
that 15 is an upper bound for bR(G) even when a graph G admits a 2-cell embedding on a
surface M ∈ {S1,N1,N2}. We also obtain upper bounds for bR(G) in terms of (a) average
degree and maximum degree, and (b) Euler characteristic, girth and maximum degree.

2 Known results

The following results are important for our investigations.

Theorem A Let G be a connected graph embeddable on a surface M whose Euler
characteristic χ(M) is non-negative and let δ(G) ≥ 5. Then G contains an edge e = xy
with dG(x)+dG(y)≤ 11 if one of the following holds:

(i) (Wernicke [26], Sanders [23]) M ∈ {S0,N1}.

(ii) (Jendrol’, Voss [9]) M ∈ {S1,N2} and ∆(G)≥ 7.

Lemma B (Rad, Volkmann [14]) If G is a graph, then γR(G) ≤ γR(G− e) ≤ γR(G)+ 1
for any edge e ∈ E(G).

According to the effects of vertex removal on the Roman domination number of a graph
G, let

• V+
R (G) = {v ∈V (G) | γR(G− v)> γR(G)},

• V−R (G) = {v ∈V (G) | γR(G− v)< γR(G)},

• V 0
R (G) = {v ∈V (G) | γR(G− v) = γR(G)}.
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Clearly {V−R (G),V 0

R (G),V+
R (G)} is a partition of V (G).

Theorem C (Rad, Volkmann [14]) Let G be a graph of order at least 2.

(i) If v ∈ V+
R (G) then for every γR-function f = (V f

0 ;V f
1 ;V f

2 ) on G, f (v) = 2 and
|pnG[v,V

f
2 ]∩V f

0 | ≥ 3.

(ii) For any vertex u ∈V (G), γR(G)−1≤ γR(G−u).

Theorem D (Hansberg, Rad, Volkmann [6]) Let v be a vertex of a graph G. Then
γR(G− v) < γR(G) if and only if there is a γR-function f = (V f

0 ,V
f

1 ,V
f

2 ) on G such that
v ∈V f

1 .

Theorem E (Rad, Volkmann [13]) If G is a graph, and xyz is a path of length 2 in G, then

bR(G)≤ dG(x)+dG(y)+dG(z)−3−|NG(x)∩NG(y)|.

The average degree ad(G) of a graph G is defined as ad(G) = 2|E(G)|/|V (G)|.

Theorem F (Hartnell, Rall [7]) For any connected graph G of order at least two, there
exists a pair of vertices, say u and v, that are either adjacent or at distance 2 from each
other, with the property that dG(u)+dG(v)≤ 2ad(G).

The girth of a graph G is the length of a shortest cycle in G; the girth of a forest is ∞.

Lemma G (Samodivkin [22]) Let G be a connected graph embeddable on a surface M
whose Euler characteristic χ is as large as possible and let the girth of G is k < ∞. Then:

ad(G)≤ 2k
k−2

(
1− χ

|V (G)|

)
.

Given a graph G of order n, let Ĝ be the graph of order 5n obtained from G by
identifying the central vertex of a copy of P5, to each vertex of G.

Lemma H (Akbari, Khatirinejad, Qajar [1]) Let G be a graph of order n, n ≥ 2. Then
γ(Ĝ) = 2n, γR(Ĝ) = 4n and bR(Ĝ) = δ(G)+2.

3 Upper bounds

A graph G of order at least two is Roman domination vertex critical if removing any vertex
of G decreases the Roman domination number. By RCV we denote the class of all Roman

International Journal of Graph Theory and its Applications 1 (2015) 67–75



On the Roman bondage number of graphs on surfaces 71
domination vertex critical graphs. Results on this class can be found in Rad and Volkmann
[14] and Hansberg et al. [6].

Theorem 1 Let G be a connected graph.

(i) If V−R (G) 6=V (G) then

bR(G)≤min{dG(u)−γR(G−u)+γR(G) | u ∈V 0
R (G)∪V+

R (G)} ≤ ∆(G).

(ii) If bR(G)> ∆(G) then G is in RCV .

A leaf of a graph is a vertex of degree 1, while a support vertex is a vertex adjacent to a
leaf.

Remark 2 Let G be any connected graph of order n ≥ 2. Let S be the set consisting of
all support vertices of Ĝ. Then f = (V (Ĝ)− S; /0;S) is a RDF on Ĝ. Since the weight of
f is 4n, by Lemma H it follows that f is a γR-function on Ĝ. Theorem C(i) now implies
V (Ĝ) =V−R (Ĝ)∪V 0

R (Ĝ). Since γR(P5) = 4 and since the central vertex of P5 is in V 0
R (P5),

V (G)⊂V 0
R (Ĝ). Labeling the vertices of each P5 of Ĝ with (1,1,0,2,0) yields a γR-function

on Ĝ. It follows by Theorem D that V (G) =V 0
R (Ĝ). All this together with Lemma H shows

that the bound in Theorem 1(i) is attainable for all graphs Ĝ. Furthermore, for any graph Ĝ
the bound in Theorem E is attainable too. Indeed, let us consider any path xyz in Ĝ, where
x is a leaf and dG(z) = δ(G). Applying Theorem E to the path xyz we obtain bR(Ĝ)≤ dĜ(z).
Since dĜ(z) = δ(G)+2, the result now follows by Lemma H.

To prove Theorem 1, we need the following lemma:

Lemma 3 Let G be a connected graph. For any subset U  V (G), let EU denote the set of
all edges between U and V (G)−U.

(i) If v ∈V 0
R (G)∪V+

R (G) then γR(G−E{v})> γR(G).

(ii) If x ∈ V+
R (G) then 1 ≤ γR(G− x)−γR(G) ≤ dG(x)−2 and for any subset S ⊆ E{x}

with |S| ≥ dG(x)−γR(G− x)+γR(G), γR(G−S)> γR(G).

Proof. (i) We have γR(G−E{v})≥ γR(G− v)+1> γR(G).
(ii) Denote p = γR(G− x)− γR(G). Let f be any γR-function on G. Since p > 0,

by Theorem C(i) it follows that f (x) = 2. Hence h = (V f
0 −NG(x);V

f
1 ∪ (NG(x)−V f

2 );
V f

2 −{x}) is a RDF on G− x. But then γR(G)+ p = γR(G− x)≤ h(V (G− x))≤ γR(G)+

dG(x)− 2. Hence 1 ≤ p ≤ dG(x)− 2. For any set S ⊆ E{x} with |S| ≥ dG(x)− p we
have γR(G−S)≥ γR(G−E{x})−(|E{x}|−|S|)≥ (γR(G−x)+1)−dG(x)+(dG(x)− p) =
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γR(G)+1, where the first inequality follows from Lemma B. �

Proof of Theorem 1. (i) The result follows immediately by Lemma 3.
(ii) Immediately by (i). �

Rad and Volkmann [15] as well as Akbari et al. [1] gave upper bounds on the Roman
bondage number of planar graphs. Upper bounds on the Roman bondage number of graphs
2-cell embeddable on topological surfaces in terms of orientable/non-orientable genus and
maximum degree, are obtained by the present author in [21].

Theorem 4 Let G be a connected graph with ∆(G)≥ 2.

(i) Then bR(G)≤ 2ad(G)+∆(G)−3.

(ii) Let G be embeddable on a surface M whose Euler characteristic χ is as large as
possible. If G has order n and girth k < ∞ then:

bR(G)≤ 4k
k−2

(
1− χ

n

)
+∆(G)−3.

Proof. (i) If G is a complete graph then the result is obvious. Hence we may assume G
has non-adjacent vertices. Theorem F implies that there are 2 vertices, say x and y, that
are either adjacent or at distance 2 from each other, with the property that dG(x)+dG(y)≤
2ad(G). Since G is connected and ∆(G)≥ 2, there is a vertex z such that xyz or xzy is a path.
It follows from Theorem E that bR(G)≤ dG(x)+dG(y)+dG(z)−3≤ 2ad(G)+∆(G)−3.

(ii) Lemma G and (i) together imply the result. �

Remark 5 Let M be a surface. Denote δMmax = max{δ(H) | H is a graph 2-cell embedded
inM}. Let G be a connected graph 2-cell embeddable onM and δ(G) = δMmax. By Lemma
H it immediately follows bR(Ĝ) = δMmax + 2. Note that (a) if χ(M) ≤ 1 then δMmax ≤⌊
(5+

√
49−24χ(M))/2

⌋
(see Sachs [20], pp. 226–227), and (b) it is well known that

δS0
max = δN1

max = 5 and δN2
max = δS1

max = 6.

In [1], Akbari, Khatirinejad and Qajar recently proved that bR(G)≤ 15 provided G is a
planar graph. As the next result shows, more is true.

Theorem 6 Let G be a connected graph 2-cell embedded on a surfaceMwith non-negative
Euler characteristic and let ∆(G)≥ 2. Then bR(G)≤ 15.

Proof. If 2≤ ∆(G)≤ 6 then bR(G)≤ 3∆(G)−3≤ 15, because of Theorem E. So, assume
∆(G) ≥ 7. Denote V≤5 = {v ∈ V (G) | dG(v) ≤ 5} and G≥6 = G−V≤5. Since χ(M) ≥ 0,
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δ(G) ≤ 6 (see Remark 5). If δ(G) = 6 then G is a 6-regular triangulation on the torus
or in the Klein Bottle, a contradiction with ∆(G) ≥ 7. So, δ(G) ≤ 5 and then V≤5 is not
empty. Since G≥6 is embedded without crossings on M and χ(M) ≥ 0, there is a vertex
u ∈V (G≥6) with dG≥6(u)≤ 6. If u has exactly 2 neighbors belonging to V≤5 then again by
Theorem E, bR(G)≤ 15. Now let all v1,v2,v3 ∈V≤5 be adjacent to u. Denote by E1 the set
of all edges of G which are incident to at least one of v1,v2 and v3. Since v1,v2 and v3 are
isolated vertices in G−E1, for any γR-function g on G−E1, g(v1) = g(v2) = g(v3) = 1.
Define now f : V (G)→{0,1,2} by f (v1) = f (v2) = f (v3) = 0, f (u) = 2 and f (v) = g(v)
for every v ∈ V (G)−{u,v1,v2,v3}. Clearly f is a RDF on G with γR(G) ≤ f (V (G)) <

g(V (G−E1)) = γR(G−E1). Thus, bR(G)≤ |E1| ≤ dG(v1)+dG(v2)+dG(v3)≤ 15.
So, it remains to consider the case where each vertex of degree at most 6 in G≥6 has

no more than one neighbor in V≤5. It immediately follows that δ(G≥6) ≥ 5. First assume
δ(G≥6)= 5. By Theorem A it follows that there is an edge xy∈E(G≥6) such that dG≥6(x)+
dG≥6(y)≤ 11. Hence dG(x)+dG(y)≤ 13. Let without loss of generality dG≥6(x)≤ dG≥6(y).
Then x has exactly one neighbor in V≤5, say v. By Theorem E applied to the path v,x,y
we have bR(G) ≤ 5+ 13− 3 = 15. Now let δ(G≥6) ≥ 6. But then G≥6 is a 6-regular
triangulation on the torus or in the Klein bottle. Since ∆(G) ≥ 7, G 6= G≥6 and there
is a path x,y,z in G, where dG(z) ≤ 5, and both x and y are in V (G≥6). Since clearly
|N(x)∩N(y)| ≥ 2, again using Theorem E we obtain bR(G)≤ 7+7+5−3−2 = 14. �
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